Product Formula for Jacobi Polynomials, Spherical Harmonics and Generalized Bessel Function of Dihedral Type

نویسنده

  • NIZAR DEMNI
چکیده

Abstract. We work out the expression of the generalized Bessel function of B2-type derived in [4]. This is done using Dijskma and Koornwinder’s product formula for Jacobi polynomials and the obtained expression is given by multiple integrals involving only a normalized modified Bessel function and two symmetric Beta distributions. We think of that expression as the major step toward the explicit expression of the Dunkl’s intertwining operator Vk in the B2invariant setting. Finally, we give in the same setting an explicit formula for the action of Vk on a product of |y| , κ ≥ 0 and the ordinary spherical harmonic Y4m(y) := |y| cos(4mθ), y = |y|e. The obtained formula extends to all dihedral systems and it improves the one derived in [16].

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Positive Radial Product Formula for the Dunkl Kernel

It is an open conjecture that generalized Bessel functions associated with root systems have a positive product formula for non-negative multiplicity parameters of the associated Dunkl operators. In this paper, a partial result towards this conjecture is proven, namely a positive radial product formula for the non-symmetric counterpart of the generalized Bessel function, the Dunkl kernel. Radia...

متن کامل

ar X iv : m at h / 98 04 02 7 v 1 [ m at h . C A ] 6 A pr 1 99 8 BIORTHOGONAL ENSEMBLES

Abstract. One object of interest in random matrix theory is a family of point ensembles (random point configurations) related to various systems of classical orthogonal polynomials. The paper deals with a one–parametric deformation of these ensembles, which is defined in terms of the biorthogonal polynomials of Jacobi, Laguerre and Hermite type. Our main result is a series of explicit expressio...

متن کامل

The Generalized Bessel Matrix Polynomials

Abstract.In this paper, the generalized Bessel matrix polynomials are introduced, starting from the hypergeometric matrix function. Integral form, Rodrigues’s formula and generating matrix function are then developed for the generalized Bessel matrix polynomials. These polynomials appear as finite series solutions of second-order matrix differential equations and orthogonality property for the ...

متن کامل

Spherical Transform and Jacobi Polynomials on Root Systems of Type Bc

Let R be a root system of type BC in a = Rr of general positive multiplicity. We introduce certain canonical weight function on Rr which in the case of symmetric domains corresponds to the integral kernel of the Berezin transform. We compute its spherical transform and prove certain Bernstein-Sato type formula. This generalizes earlier work of Unterberger-Upmeier, van Dijk-Pevsner, Neretin and ...

متن کامل

A note on optimal designs in weighted polynomial regression for the classical efficiency functions

In this note we consider the D optimal design problem for the heteroscedastic polynomial regression model Karlin and Studden a found explicit solutions for three types of e ciency functions We introduce two new functions to model the heteroscedastic structure for which the D optimal designs can also be found explicitly The optimal designs have equal masses at the roots of generalized Bessel pol...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009